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Background

My specialty: Empirical dynamic games

Previous paper: Structural analysis of collusion (“Measuring the Incentive to

Collude: The Vitamins Cartels, 1990-99,"2022 REStud, with Takuo Sugaya)
Relatively easy to model explicit cartel agreements

What about less explicit forms of cooperation, like price-leadership?
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Edgeworth Cycles (1): Theory
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Maskin & Tirole (1988 Econometrica)’A Theory of Dynamic Oligopoly, II: Price Competition,
Kinked Demand Curves, and Edgeworth Cycles”
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Edgeworth Cycles (2): Empirics
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Byrne & de Roos (2019 AER)“Learning to Coordinate: A Study in Retail Gasoline”
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Who Cares!

Consumers, politicians, & government agencies: “Why are price increases bigger than
decreases?”, “There must be some anti-competitive conspiracy”, “Let’'s make real-time gas-

price data publicly available”
Price-fixing cases:

1. Clark & Houde (2014 JIE)"The Effect of Explicit Communication on Pricing: Evidence from

the Collapse of a Gasoline Cartel”[Canada]

2. Foros & Steen (2013 Scandinavian J of Econ)“Vertical Control and Price Cycles in Gasoline
Retailing”[Norway]

3. Wang (2008 RIO)"Collusive Communication and Pricing Coordination in a Retail Gasoline
Market”[Australia]
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Are Cycles Pro- or Anti-competitive!

Mixed evidence on markup-cycle relationship:

Positive correlation: Deltas (2008 JIE) [USA]; Clark & Houde (2014 JIE)
[Canada]; Byrne (2019 RIO) [Australia]

Negative correlation: Lewis (2009 J Law & Econ) [USA]; Zimmerman, Yun, &
Taylor (2013 RIO) [USA]; Noel (2015 [JIO) [Canada]

Potential reason 1: Intrinsic heterogeneity across countries & regions

Potential reason 2: Measurement/detection is non-trivial
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Why We Need Good Detection Methods

Scalability: We just cannot eyeball all "big data.”

Reliability: Ad-hoc definitions could be inaccurate.

Replicability: Systematic approach can be repeated/applied elsewhere.
More generally, this paper demonstrates...

how economists can exploit “recent advances in machine learning”...

...to
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Road Map

(1) Theory
(2) Four existing methods

(3) Six new methods
(4) Data & manual classification

(5) Results (“horse race” + markups)
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Theory

Edgeworth (1925)
Maskin & Tirole (1988)
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Theory & Measurement of Edgeworth Cycles

THEORETICALLY, EDGEWORTH CYCLES
ARE CHARACTERIZED BY:

Cyclicality
Asymmetry

Stochasticity

Strategicness

DETECTING EDGEWORTH CYCLES

EMPIRICALLY...

(HOLT,

We propose methods to capture #1.
Existing papers focus on (& successfully capture) #2.

We do not use/require #3.

Both (stochastic & deterministic cycles) are

documented.

Both raise antitrust concerns.

We do not use/require #4.

As long as price grid is fine, individual-station-

level data should be sufficient to capture cycles.
Price grid must be fine in the Maskin-Tirole theory.

Price grid is fine in reality.

IGAMI, & SCHEIDEGGER) 11



Four Existing Methods

4. Many Big Price Increases



Method 1: Positive Runs vs. Negative Runs

Method 1: Positive Runs vs. Negative Runs (“PRNR”). Castanias and Johnson
(1993) compare the lengths of positive and negative changes. We formalize this idea by

classifying each station-quarter as cycling (cycle;; = 1) it and only if
- N? :
mean (Zen (-?“-u.-'rﬁ)) < mean ([e-n. (-?“-u.-n. )) + gFRNE, (1)

where len (run™) and len (run~) denote the lengths of consecutive (multi-day) price increases

. . . . i@ . »w nPRNR
and decreases within quarter ¢, respectively. The means are taken over these “runs.” 0

L

0 is a scalar threshold. which we treat as a parameter.'*

Focus on asymmetry
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Method 2: Mean Increase vs. Mean Decrease

Method 2: Mean Increase vs. Mean Decrease (“MIMD”). Eckert (2002) compares
the magnitude of the mean increase and the mean decrease. Formally, station-quarter (,t)

1s cycling 1f and only if

|-:rn.ea-?'1.d€f (Ap;fd” > |-mea-?'1.det (Ap;d” + GMIMD (2)

where Ap.", and Ap, , denote positive and negative daily price changes at station i (between
days d and d — 1), respectively, and pMIME - () is a scalar threshold. That is, a cycle is
detected when the average price increase 1s greater than the average price decrease.

Also focus on asymmetry
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Method 3: Negative Median Change

Method 3: Negative Median Change (“INMC”). Lewis (2009) and many subsequent

papers classity cycle; ; = 1 1f and only 1f

mediange: (Api.q) < 67, (3)

0 NMC

where Ap; , denotes price change between days d and d — 1, and ~ 0 1s a scalar

threshold. In other words, the significantly negative median change is taken as evidence of

price cycles.

Yet another way to measure asymmetry
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Method 4: Many Big Price Increases (“MBPI”). Byrne and de Roos (2019) identify

price cycles with the condition

ZH {Ap-zt.d N Qi‘WBPI} > ggiBPIq (4)

det

where T{-} is an indicator tunction that equals one if the condition inside the bracket is

: : MBPI MBPI SN 9 s
satisfied and zero otherwise. 6 and 6, are thresholds for “big” and “many” price
: : . MBPI : : MBPI _ o
increases, respectively. They set 6] = 6 (Australian cents/liter) and 6, = 3.75 (per

quarter) in studying the WA data. Thus, many instances of big price increases are taken as

evidence of price cycles.

Captures not only asymmetry but both amplitude & frequency of cycles!

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)

16



Four Existing Methods: Summary

Essentially, simple “threshold models” with 1 or 2 parameter

All focus on “asymmetry” but not “cyclicality.”
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Six New Methods

5.

6.

7. Cubic splines

8. Long Short-Term Memory (LSTM)
9. Ensemble in random forests

10.

Detecting Edgeworth Cycles (Holt, Igami, & Scheidegger)
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Method 5: Fourier Transform

Method 5: Fourier Transform (“FT”). Fourier analysis is a mathematical method for
detecting and characterizing periodicity in time-series data. When a continuous function of
time ¢ (x) is sampled at regular time intervals with spacing Az, the sample analog of the
Fourier power spectrum (or “periodogram”) is

1 |
N

n=

P(f)=

2
gne—?rri‘f:rn , (5)
1

where f is frequency, N is the sample size, g, = g (nAx), 1 = v/—1 is the imaginary unit (not
to be confused with our gas-station index), and x,, is the time stamp of n-th observation. It
is a positive, real-valued function that quantifies the contribution of each frequency f to the

* * ."'\'r 15
time-series data (g,),_,."?
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Method 5: Fourier Transform (cont.)

We focus on the highest peak of P (f) and detect cycles it and only if
max Pi:(f) > 05

max!’

max

where P, (f) is the periodogram (5) of station-quarter (i,t), and 6. .

threshold parameter.

Suitable for regular cycles with deterministic frequency

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)

(6)

> (0 1s a scalar
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Method 6: Lomb-Scargle Periodogram

Method 6: Lomb-Scargle Periodogram (“LS’). The Lomb-Scargle periodogram (Lomb
1976, Scargle 1982) characterizes periodicity in unevenly sampled time-series.'® It has been
extensively used in astrophysics because astronomical observations are subject to weather
conditions and diurnal, lunar, or seasonal cycles. Formally, it is a generalized version of the

classical periodogram (5):'°

1s L) (2, gncos (27f |2, — ) (>, gnsin (27 f [z, — m))? |
P = 2 > o, cos? (2 f |x, — 7)) N sin® (27 f [z, — 7]) ’ (7)

where 7 1s specified for each frequency f as

T = ! tan™! 2 SiD (4’fo.-$?1) : (8)
47 f >, cos(dnfx

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Method 6: Lomb-Scargle Periodogram (cont.)

We propose the following threshold condition to detect cycles:

max PEP(f) > 05,

where 62° > 0 is a scalar threshold parameter.

v" Like FT (Method 5), good for regular, deterministic cycles

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Method 7: Cubic Splines (“CS”). This method captures cycles’ frequency in a less
structured manner than FT and LS by using cubic splines (CS). A spline is a piecewise
polynomial function. We smooth the discrete (daily) time-series by interpolating it with a
cubic Hermite interpolater, which is a spline where each piece is a third-degree polynomial
of Hermite form.'® Tor each (i.t), we fit CS to its demeaned price series , Diqg = Did —
meanget (piq). and count the number of times the fitted function CSi+ (d) crosses the d-axis
(i.e., equals zero). That is, we can count the number of real roots and detect cycles with the
condition.

#roots (@H (d)) > 00 (10)

root!

cs ) ‘ : —_— L
where 6. > 0 is a scalar parameter. Thus, we take any frequent oscillations (not limited

to the sinusoidal ones as in F'T or LS) as a sign of cycles.

More flexible than spectral methods 5-6; good for irregular, stochastic cycles

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Recurrent neural networks (RNN) with LSTM

De-facto “industry standard” for recognizing, modeling, & predicting speech,

handwriting, language, polyphonic music, etc.

Econometrically, a class of flexible, nonparametric models for time-series data

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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lethiod &: L9TI/ s a recursive dynamic model whose

behav1or centers on (pairs of) two state variables:

g l [ -1 | N
s, = tanh (cd) o ,\ (wl + wyApy + wys, 1) . and (11)
- ~ "~ -
“output” “output gate”
c, = mh (w + W Apy + wks l) oA ((.a"r + Wi Apy + whs' 1)
a — 1z 4 583DPd 65d ! 7 82Pd 94
-~ - Ny ~ -
“input” “input gate”
+c o [1— A (wh + wiApy + wys) )] (12)
a ©| . 7 g2 Pd 951 )|
“forget gate”
where d = 1,2,---, D is our index of days, Apy; = pg — pa_1 (we set Ap; = 0), tanh (z) =
r__ ,—T . . . . .
S s the hyperbohc: tangent function, o denotes the Hadamard (element-wise) product,

and A (z) =

_H_x
l l )

ws are weight parameters with the following dimensionality: (i) w}, ws, wy, wy, w-,

l l

are B; x 1 vectors; (ii) wj, wg, and wg are B; x B; matrices. Thus, B =(B;, Bs, - --

is the cumulative density function (CDF) of the logistic distribution.® The

and w}

,Br)

determines the effective number of latent state variables and parameters, and hence the

flexibility of the model.

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)

25



/lethod 8: LSTIV (cont.)

& (pi.t; QLSTM) = wqo +wnsh > 0, (13)
where %71V = (w, L, B) collectively denotes all parameters, including (i) the many weights
nw = ((w‘i wh, - ,wg)zzl , W10, wll)g (ii) the number of layers L, and (iii) the profile of

the number of blocks in each layer, B. We set L = 3 and B = (16, 8,4), and find w that
: : : : . . . . . ) @ 29

approximately maximizes the accuracy of prediction (to be explained in section 3.3).” In

summary, this method sequentially processes the daily price data in a nonparametric Markov

model, and uses the terminal state s* as a latent score to detect cycles.

How flexible? Number of weight parameters (w) = 2,165

The most flexible of all stand-alone methods 1-8

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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" 7: N “,'llll‘»',' 11 _[,',l,[.",l“[.l.l COIETSI

Method 9: Ensemble in Random Forests (“E-RF”). This method combines Methods

1-7 within random forests, a class of nonparametric regressions. Let
m — L m 1/

denote a “gap,” the scalar difference between the left-hand side (LHS) and the right-hand
side (RHS) of the inequality that defines each method m = 1,2.---, M, excluding the
threshold parameter, 8™. For example, inequality (2) defines Method 2. Hence, g7, =
|-?'n-ea-n.det (Apjd” — |meandet (A-p;d) |.23 Let

(gr) (15)

m=1

it

. ] - 2 T . . . .
denote their vector, where M = 7.** We construct a decision-trees classification algorithm

Flexible aggregator that gets more information out of Methods 1-7

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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PP | | .
Aethod 9: Ensemble in Random Fo (cont)
9
denote their vector, where M = 7.°* We construct a dec ision-trees classification algorithm

that takes g;+ as inputs and predicts cycle;; = 1 if and only if

K
h(gis @™ kK waFﬂ {gir € Rit =Y wifo(ganlt) > 0. (16)
k=1 k=1
where K is the number of adaptive basis functions, wi* is the weight of the k-th basis

F

function, Ry 1s the A-th region in the A/-dimensional space of g;;, and R encodes both

the choice of variables (elements of g;,) and their threshold values that determine region

‘)' . . . . . . . . * .
R;..”> Because finding the truly optimal partitioning is computationally infeasible. we use
* . . . . ‘) . \ .
random forests algorithm to stochastically approximate it.?® Thus, this method aggregates

the seven threshold models in a flexible manner that permits interactions between g!';s.

RF __ o K K . . .
0" = (wRF, H:RF) = ((wEF)k_l (ﬁ;fF)k_l) is the full set of parameters.

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Method 10: Ensemble in LSTM

Method 10: Ensemble in LSTM (“E-LSTM”). This method combines Methods 1-8

within an extended LSTM by incorporating g; ; in (15) as additional variables in the laws of

motion:

si, = tanh (cff) A (wl + whApy + wis ! + wigg) ., and (17)
cfd — tanh (w4 + erpd + wésii 14 wlgg) oA\ (w7 -+ wSApd -+ wgsig 1+ whg)

+c‘; L [1 — A (w7 — wSApd — wgsif 14+ wl4g)] , (18)
where (w‘fm,w‘fm, wEM) are the additional weight parameters for g;; (we suppress (i,t) sub-
script here). Unlike pg, which varies across D = 90 days, g is constant for all d and [ within

(z,t). The other implementation details are the same as Method 8.
Super-flexible aggregator that gets more out of Methods 1-8

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Summary of 10 Methods

EXISTING METHODS NEW METHODS
Positive Runs vs. Negative Runs (PRNR) Fourier Transform (FT)
Mean Increase vs. Mean Decrease (MIMD) Lomb-Scargle Periodogram (LS)
Negative Median Change (NMC) 7. Cubic Splines (CS)
Many Big Price Increases (MBPI) 8. Long Snort-Terrm Mermory (LSTM)
9. Ensemble in Random Forests (E-RF): Methods 1-

Ensemble in LSTM (E-LSTM): Methods 1-8

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)



Optimization of Parameter Values: Maximize Accuracy

Z{ﬁ',t) I {mzt (9) — C'yde.i.t}

# all predictions

% correct (0) = x 100, (19)

e —
where cycle; , (@) € {0,1} is the algorithmic prediction for observation (i,t) at parameter
value 0, and cycle;; € {0, 1} is the manual classification label (data). We analogously define

two types of prediction errors, “false negative” and “false positive.”?" Thus,
0" = argmax % correct (0). (20)
)

. _ iy . . . 28
characterizes the optimized (or “trained”) model for each method.
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Data & Manual Classification



Summary Statistics

(1)

(2)

(3)

Dataset Western Australia New South Wales Germany
Sample period (yyvyy/mm/dd) 2001/1/3 —2020/6/30 2016/8/1 — 2020/7/31 2014/6/8 — 2020/1/7
Number of gasoline stations 821 1,226 14, 780
Number of calendar quarters 77 15 26
Number of station-quarters 25,463 9,693 353, 086

Of which:

Labeled as “cycling” by 3 RAs 0 (0.0%) 6.878 (71.0%) 14,116 (39.6%)
Labeled as “cycling” by 2 RAs 0 (0.0%) 906 (9.4%) 7,173 (20.1%)
Labeled as “cycling” by 1 RA 15,007 (61.1%) 759 (7.8%) 6,280 (17.6%)
Not labeled as “cycling” by any RA 9,562 (38.9%) 1,150 (11.9%) 8,116 (22.7%)
Total manually labeled 24,569 (100.0%) 9,693 (100.0%) 35,685 (100.0%)
Not manually labeled 894 0 317,401

Note: Each “manually labeled” station-quarter observation in the WA data is single-labeled as either “cycling.” “maybe

cycling.” or “not cycling.” whereas the NSW and German data are triple-labeled. See Appendix A for details.

DETECTING EDGEWORTH CYCLES

(HOLT,

IGAMI, & SCHEIDEGGER)
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Manual Classification
Western Australia (WA): Team 1 (two RAs) single-labeled 24,569 station-quarters in
260 hours.

New South Wales (NSW): Team 2 (three RAs) triple-labeled 9,693 station-quarters
in 210 hours.

Germany: Teams 2 & 3 (three + three = six RAs) triple-labeled 35,685 station-

quarters in 480 hours.

All RAs are either graduate or undergraduate students at Yale University, majoring

in economics, mathematics, or statistics. Wage = US$13.50/hour

Total labor cost = US$12,825

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER) 34



Examples (1): WA
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Examples (2): NSW
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Examples (3): Germany
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Results

1. Accuracy “horserace”
2. How much data do we need?

3. Markups & cycles

Detecting Edgeworth Cycles (Holt, Igami, & Scheidegger)
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I. Western Australia

Accuracy Comparison 100 |
in WA (= easy) %
90 -~
ol 1.PRNR
—~ -],
Most methods perform 2 60 “LPRAR
near/above 90%. G 75 T *=3.NMC
& 70 - ~+4. MBPI
2 ~-5.FT
Methods 8-10 perform g 65 | ~6.LS
3 60 - 7.CS
near/above 99%. < o 8.LSTM
~¥=9.E-RF
Method 7 lags behind. 0T ~#-10.E-LSTM
45
40 1 1 1 1 1 1 1 J

0.1% 1% 5% 10% 20%  40% 60%  80%
Subsample Used for Training
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1. New South Wales

Accuracy Comparison 100
in NSW (= medium) zz ’

85
Most methods perform Tw :;::ﬁm
near/above 80%. g:z e
Methods 8-10 perform g 65 - :22
near/above 85%-90%. < : ggivu

g E.

Methods 3 & 7 give ® 0 0 ELSTM
degenerate predictions iz % 1 1 1 1 1 1 1 J

0.1% 1% 5% 10% 20%  40% 60%  80%
Subsample Used for Training
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Accuracy Comparison
in Germany (= hard)

Most methods fail.

Method 10 achieves 80%,
followed by Methods 8-9.

Method 7 does O.K.

Among existing methods,
only Method 4 gives non-

degenerate predictions.

Accuracty (% Correct)

100
95
90
85
80
75
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60
55
50
45
40
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Obvious Question 1:

Why Do Existing Methods (1-4) Work So Well in Australia...?

WA

NSW

Ny i Ny _ J L
-5 -4 -3 -2 -1 0
Median Change in Daily Price (Australian Cents)

-2 -1.5 -1 -5 0 5
Median Change in Daily Price (Australian Cents)
Cycling [ 1 Notcycling

Cycling [ Noicycling|
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Obvious Question 1:
...But Totally Fail in Germany?

[
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Obvious Question 2:
How Much (Manually Labeled) Data Do We Need!?

Methods 1-7 & 9 perform surprisingly well with only 0.1% of the data (= 25, 10,
& 36 observations in WA, NSW, & Germany, respectively).

Methods 8 & 10 need more data but eventually outperform the others.

The “critical” data size is about 1%-5% of the samples (= several hundred

observations = tens of RA hours = a few hundred US dollars): Economical!

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)
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Markups & Cycles (1): WA

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Method Manual PRNR MIMD NMC  MBPI  FT LS ¢S LSTM E-RF  E-LSTM

I. Western Australia (# manually labeled observations: 24, 569)

Cycling

# obs. 15,007 14,462 14,620 16,147 16,941 16,223 15,774 15,953 15,011 14,994 14,999
Mean 11.86 12.07 12.21 11.66 11.46 11.88 12.03 11.78 11.86 11.86 11.86
Std. dev. 4.01 3.80 3.74 3.98 4.13 3.87 3.85 4.04 4.01 4.01 4.01
Not cycling

# obs. 9,562 10,107 9,949 8,422 7,628 8, 346 8, 795 8,616 9,558 9,575 9,570
Mean 9.47 9.30 9.05 9.52 9.73 9.08 8.94 9.35 9.47 9.47 9.47
Std. dev. 4.97 5.04 4.98 5.22 5.20 5.18 5.03 5.02 4.97 4.97 4.96
Difference

Mean diff. 2.39 2.77 3.16 2.14 1.73 2.80 3.09 2.43 2.39 2.39 2.39
Welch's t 39.53 46.74 03.80 32.96 25.64 43.53 50.02 38.67 39.53 39.55 39.60
D. F. 17,247 17,771 17,314 13,648 12,134 13,263 14,608 14,723 17,236 17,282 17,295
p value < .001 < .001 <« .001 <« .001 <«<.001 <«<.001I <«.001I <« .001 < .001 <.001 < .001

DETECTING EDGEWORTH CYCLES (HOLT, IGAMI, & SCHEIDEGGER)



Markups & Cycles (2): NSW

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Method Manual PRNR MIMD NMC  MBPI FT LS CS LSTNM  E-RF  E-LSTM

II. New South Wales (# manually labeled observations: 9,693)

Cycling

# obs. 6,878 8,324 8,038 9,693 7,303 7,704 7,994 9,253 7,052 6,961 7,183
Mean 12.03 11.73 12.35 11.66 12.48 11.76 11.81 11.58 12.19 12.07 12.13
Std. dev. 5.01 5.80 5.58 6.04 5.48 5.89 5.84 5.99 5.54 5.53 5.56

Not cycling

# obs. 2,815 1,369 1,655 0 2,390 1,989 1,699 440 2,641 2,732 2,510
Mean 10.76 11.25 8.33 — 9.18 11.28 10.97 13.48 10.25 10.64 10.33
Std. dev. 7.10 7.31 7.01 — 6.92 6.56 6.85 6.79 7.01 7.08 7.08

Difference

Mean diff. 1.27 0.48 4.02 — 3.30 0.48 0.84 1.94 1.43 1.80

Welch's ¢t 8.50 2.31 21.94 — 21.24 2.97 4.70 —5.76 12.80 9.48 11.55
D. F. 4,266 1,663 2,106 — 3,423 2,870 2,252 472 3,939 4,103 3,648
p value < .001 021 < .001 — < .001 .003 < .00l < .001 < .001 < .001 < .001
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Markups & Cycles (3): Germany

© O @ 6 @ © ™ ® 0O (10)

Method Manual PRNR  MNIMD NMC MBPI LS CS LSTM E-RF E-LSTM
ITI. Germany (# manually labeled observations: 35,685)

Cyecling
# obs. 14,116 0 1,013 72 8,763 7 14,281 11,762 13,574 15,299
Mean 98.18 — 99.57 99.67 98.73 114.11  115.64 98.19 98.38 98.16 98.18
Std. dev. 3.57 — 6.96 3.26 3.84 31.40 3.60 3.60 3.59 3.51
Not cycling
# obs. 21,569 35,685 34,672 35,613 26,922 35,678 35,678 21,404 23,923 22,111 20, 386
Mean 98.65 98.46 98.43 98.46 98.38 98.46 98.65 98.50 98.65 98.68
Std. dev. 4.37 4.08 3.96 4.08 4.15 4.05 4.36 4.30 4.34 4.45
Difference
Mean diff. —0.47 1.21 0.35 —0.46 —0.12 —0.49 —0.50
Welch's t —11.11 . 3. .20 . —10.86 —2.77 —11.55 —11.86
D. F. 33,984 — 1,031 71 15,941 6 34,110 27,415 32,697 35,595
p value < .001 — < .001 .002 < .001 197 < .001 .006 < .001 < .001
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Obvious Question 3: Why
Margins at Cycling (i, t) > Margins at Non-Cycling (i, t)
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Obvious Question 3: ...And Why
Margins at Cycling (i, t) < Margins at Non-Cycling (i, t)
in Germany!
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Obvious Question 4:
But, How Can “Cycles” Be Less Volatile Than “Non-Cycles”?
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Hint: Human RAs recognize multi-day up-downs as “cycles” & daily zig-zags as noise.
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Obvious Question 5:
Why Did Existing Methods Find Corr(margin,cycle) > 0?

METHOD 3: NEGATIVE MEDIAN CHANGE METHOD 4: MANY BIG PRICE INCREASES
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Hint: Their threshold conditions tend to pick up high-volatility (= high-mean) cases.
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Obvious Question 6:
Human RAs Focus on “Cyclicality” But Not “Asymmetry.”
Maybe “Asymmetric Cycles” Do Feature Higher Margins!?

(0) (00)

Method Manual Manual 4+ asymmetry

III. Germany

Cycling

# obs. 14,116 4,265
Mean 98.18 98.01
Std. dev. 3.07 3.39

Not cvcling

# obs. 21,569 31,420
Mean 98.65 98.53
Std. dev. 4.37 4.16

Difference

Mean diff. —0.47 —0.52
Welch's ¢t —11.11 —9.05
D. F. 33,984 6,153
p value < .001 < .001

Answer: No.
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Conclusion

We formalize 4 existing methods, propose 6 new methods, & empirically assess

their performances in WA, NSW, & Germany.

Methodologically: (1) difficulty of cycle detection varies across
countries/regions; (2) Existing methods work well in WA & NSW but mostly fail

in Germany, because not all German cycles fit Edgeworth-style asymmetry

-~ Distinguish between “asymmetry” & “cyclicality”

(3) Nonparametric/machine-learning methods (esp. LSTM & E-LSTM) achieve
highest accuracy (99%, 90%, & 80%, respectively) at reasonable labor cost.
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Conclusion (cont.)

Substantively: Whether researchers find a positive or negative statistical
relationship between gas stations’ profit margins & the existence of cycles
could critically depend on their choice of “operational definitions” & detection

methods.

Because the discovery of “facts” inform subsequent policy interventions, these
(seemingly innocuous) methodological considerations are consequential &

directly policy-relevant.
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Recommendation for Researchers/Practitioners

1. Manually label 100 observations for cyclicality.
2. Calibrate/optimize Method 4 (MBPI) for detecting cycles.
3. Ifneeded, use Methods 5 (FT) or 6 (LS) for clearly defining cycles.

4, |If these methods do not work, additionally [abel 200-400 observations and try Methods 7 (CS), 9 (E-
RF), 8 (LSTM), & 10 (E-LSTM) in the increasing order of complexity/accuracy.

5. After automating cycle-detection, classify cycling observations by asymmetry: (a) Edgeworth, (b)
inverse-Edgeworth, & (c) symmetry.

6. Compare prices & markups between subsamples (defined in the above).
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